Efficient Biodiesel Production via CaO Catalysis: Optimization of Waste Cooking Oil Conversion
Main Article Content
Abstract
The global transition toward renewable energy sources have intensified studies on biodiesel production from waste cooking oil (WCO) as a sustainable alternative to petroleum-based fuels. This study investigates calcium oxide (CaO) as a heterogeneous catalyst for the transesterification of various waste cooking oils. A systematic Box-Behnken Design (BBD) approach was employed to optimize critical reaction parameters, including methanol-to-oil molar ratio (6:1-12:1), catalyst concentration (1-5 wt.%), reaction temperature (50-70°C), and reaction time (1-4 hours). The optimized conditions yielded biodiesel conversion rates exceeding 96% under mild reaction conditions (methanol-to-oil ratio of 9:1, 3 wt.% catalyst, 60°C, 3 hours.The CaO catalyst demonstrated good reusability, maintaining >85% of its initial activity after three consecutive reaction cycles. This study establishes CaO-catalyzed transesterification as an efficient, environmentally sustainable approach for converting waste cooking oils into high-quality biodiesel that meets ASTM D6751 specifications.
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in the International Journal of Future Research and Innovation (IJFRI) are licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Authors retain copyright and grant IJFRI the non-exclusive right to publish, distribute, and archive the work.
References
Abdollahi, M., Salehi, M., Seyedsadjadi, M., & Yaripour, F. (2025). Metal-organic frameworks-derived CaO/ZnO composites as stable heterogeneous catalysts for biodiesel production. Scientific Reports, 15(1), 87393-x. https://doi.org/10.1038/s41598-025-87393-x
Abdulkareem-Alsultan, G., Asikin-Mijan, N., Lee, H. V., & Taufiq-Yap, Y. H. (2019). Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide catalyst derived from chicken bones. Scientific Reports, 9(1), 18982. https://doi.org/10.1038/s41598-019-55403-4
Ahmadbeigi, A., Mahmoudi, M., Fereidooni, L., Akbari, M., & Kasaeian, A. (2024). Biodiesel production from waste cooking oil: A review on production methods, recycling models, materials and catalysts. Journal of Thermal Engineering, 10(5), 1362-1389. https://doi.org/10.14744/thermal.0000826
Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2011). Biodiesel separation and purification: A review. Renewable Energy, 36(2), 437-443. https://doi.org/10.1016/j.renene.2010.07.019
Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2012). Production of biodiesel using high free fatty acid feedstocks. Renewable and Sustainable Energy Reviews, 16(5), 3275-3285. https://doi.org/10.1016/j.rser.2012.02.063
Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14-26. https://doi.org/10.1016/j.jiec.2012.07.009
Berrios, M., Martín, M. A., Chica, A. F., & Martín, A. (2011). Purification of biodiesel from used cooking oils. Applied Energy, 88(11), 3625-3631. https://doi.org/10.1016/j.apenergy.2011.04.060
Boey, P. L., Maniam, G. P., & Hamid, S. A. (2011). Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review. Chemical Engineering Journal, 168(1), 15-22. https://doi.org/10.1016/j.cej.2011.01.009
Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50(1), 14-34. https://doi.org/10.1016/j.enconman.2008.09.001
Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186. https://doi.org/10.1016/j.aca.2007.07.011
Knothe, G. (2010). Biodiesel and renewable diesel: A comparison. Progress in Energy and Combustion Science, 36(3), 364-373. https://doi.org/10.1016/j.pecs.2009.11.004
Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006
Liu, X., He, H., Wang, Y., Zhu, S., & Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2), 216-221. https://doi.org/10.1016/j.fuel.2007.04.013
Maythee, S., Waraporn, S., Anusith, T., Dussadee, R., & Penjit, S. (2023). Box–Behnken optimization of biodiesel production using trisodium phosphate catalyst from monazite ore processes. Biofuels, Bioproducts and Biorefining, 17(5), 1090-1102. https://doi.org/10.1002/bbb.2505
Sharma, Y. C., Singh, B., & Korstad, J. (2020). Application of an efficient nonconventional heterogeneous catalyst for biodiesel synthesis from Pongamia pinnata oil. Energy & Fuels, 24(5), 3223-3231. https://doi.org/10.1021/ef901514a
Sharma, Y., & Singh, B. (2020). Optimization of biodiesel production from waste cooking oil using response surface methodology. Fuel, 89(3), 658-664. https://doi.org/10.1016/j.fuel.2019.10.018